

Summary of known issues:

Issue 1: Latest version of TensarSoil (information)
Issue 2: EBGEO method: typographical error in print-out (calculations correct - minor issue)
Issue 3: Definition of load factors for horizontal loads in limit state design methods (information)
Issue 4: "Zero length" line created by TensarSoil on exporting specific geometry to
TensarSlope (operational issue created in TensarSlope with exported files)
Issue 5: LRFD (AASHTO 2010) 2-part wedge method: issue with material factor applied to static geogrid design strength on opening a saved file (creates minor error - simple work-around available)
Issue 6: LRFD (AASHTO 2010) tie-back wedge and 2-part wedge methods: load factors applied to the vertical components of the earth pressure (creates minor error - no work around)
Issue 7: BS 8006 tie-back wedge (and other) methods: problem if surcharge is placed on top of facing (not an error - this situation should be avoided)
Issue 8: AS4678 method: user adjusted load factor appearing incorrectly on print-out (calculations correct - typographical error)
Details follow below

Issue 1	Make sure that you are using the latest version of TensarSoil
Solution 1	Check in Help \rightarrow About for version number. Current version is 2.17.9

About TensarSoil
TensarSoil®
Reinforced fill wall and steep
slope design program. Version 2.17 .9

Issue 2 In the EBGEO design method there is a minor typographical error in print-out. The heading of the middle column of this table in the internal stability results should be Z_{d} rather than E_{d}.

Solution 2	The PDF file created by TensarSoil may edited using appropriate PDF programs. This error may be adjusted manually if required.			
Issue 3	In all limit state design methods horizontal loads are now defined as either temporary or permanent which affects the partial load factor applied in limit state methods. This needs to indicated in the table of load factors given in the print-out. This is an example of the table of load factors in AASHTO/LRFD. There is no specific mention horizontal applied loads apart from earth pressure, however the partial load factors given for traffic or surcharge would be applied in the case that the horizontal load is a live load. In the case of a permanent horizontal load, the load factor used would be the same as applied to vertical dead loads.			
	Applied partial load factors As given in Section 3.4, Tables 3.4.1-1 and 3.4.1-2	Load combination limit state	Static	
		Minimum or maximum	Max	Min
		DC (dead load of facing)	1.25	0.90
		EH (horizontal and vertical components of force on back of MSEW	1.50	0.90
		EV (vertical load of MSEW)	1.35	1.00
		ES (vertical dead loads above or behind MSEW)	1.50	0.75
		WA (water load)	1.00	1.00
		LL (live traffic load)	1.75	0.00
		LS (ive surcharge)	1.75	0.00

Solution 3

If it is important to clarify this point for a specific design case, then it can be mentioned in the print-out notes section or elsewhere in the supporting documentation for the design or application suggestion.

4 LRFD factors		-	\square	\times
Load combination limit state	Static loading (Strength I)	Seismic loading (Extreme event I)		
Soil strength parameters	1.000	1.000		
Sliding soil-to-soil	1.000	1.000		
Bearing resistance	0.650	1.000		
Geogrid tension failure	0.900	1.200		
Geogrid pullout	0.900	1.200		
Connection failure	0.900	1.200		
Show values for: Load Factors Material and resistance factors	Set to default values			
	Default values may be saved to file LRFDFactors.ttt, in AppData, and will be loaded when the program starts. Delete the file to restore original defaults			

After saving and re-opening a file, the three material factors mentioned above have all changed to a value of 1.0. The static factor for "bearing resistance" has a red background, indicating that it is outside the permitted range, however this warning is incorrect and can be ignored.

If these new factor values of 1.0 are left as shown above, then they will be used in any internal stability calculations which use these resistances, resulting in CDR values slightly too high.

Solution 5	There is a bug in TensarSoil related to the material factors for the static design case mentioned above, which cannot be fixed at the current time. The work-around is simple: on opening a saved file which was created using the "LRFD (AASHTO) 2PW" design method, and assuming that the default partial material factors are required, then the "LRFD factors" form should be opened, selecting "material and resistance factors". The control "Set to default values" should be clicked, which will revert these three material factors back to values of 0.9, after which calculations will be carried out using these values. There is a second control "save these values as default", which will save the current set of all load and material factors to a file "LRFDFactors.txt" in the AppData folder for TensarSoil. Unfortunately this does not resolve the problem, and on opening a saved file these values will have reverted back to 1.0 again. This issue does not happen in the case of using the "LRFD (AASHTO)" tie-back wedge method.
Issue6	In the LRFD (AASHTO 2010) (tie-back wedge and 2-part wedge) methods, factors are applied to various loads, following the requirements of AASHTO. There is a minor issue related to the load factor applied to the vertical components of the earth pressure load applied to the back of the reinforced soil block by a superimposed dead load and the soil load. In the case shown below, the wall has a significant backward inclination, and because the wall friction angle $\delta=0$ in this case, there is an upward component of earth pressure applied to the wall back

The magnitudes of unfactored and factored loads may be examined in the form "Detailed forces and moments for external stability" which is accessed using this icon:

The following tables give all forces and moments used in the external stability Forces and moments required for external stability calculations for static conditions Calculation of forces, and moments about centre of base of reinforced soil block.						
	Vertical			Horizontal		
Forces (kN / m)	unfactored	Load CaseA	Load CaseB	unfactored	Load CaseA	Load CaseB
Earth pressures on the back of reinforced soil block due to self weight of soil and loads on backfill:						
Soil Dead loads Live loads	$\begin{aligned} & -26.5 \\ & -6.2 \\ & -6.2 \end{aligned}$	$\begin{aligned} & -39.7 \\ & -9.3 \\ & -10.8 \end{aligned}$	$\begin{aligned} & -35.7 \\ & -8.4 \\ & -10.8 \end{aligned}$	$\begin{aligned} & 150.1 \\ & 35.1 \\ & 35.1 \end{aligned}$	$\begin{aligned} & 225.2 \\ & 52.7 \\ & 61.5 \end{aligned}$	$\begin{aligned} & 225.2 \\ & 52.7 \\ & 61.5 \end{aligned}$
Self weight of the reinforced block and loads applied above and within it:						
Soil Facing Dead loads Live loads	$\begin{aligned} & 1015.7 \\ & 71.6 \\ & 119.6 \\ & 119.6 \end{aligned}$	$\begin{aligned} & 1371.2 \\ & 89.5 \\ & 179.4 \\ & 209.3 \end{aligned}$	$\begin{aligned} & 1015.7 \\ & 64.4 \\ & 89.7 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$
Totals	1287.6	1789.5	1114.9	220.4	339.4	339.4

The vertical load components due to earth pressure on the back of the reinforced soil block are given in the upper middle section of the table above. The issue relates to the soil and dead load components. The unfactored soil load is $-26.5 \mathrm{kN} / \mathrm{m}$ (negative due to being upwards). For both Load Case A and Load Case B, the partial load factor is 1.5 , resulting in a factored load of -
$39.7 \mathrm{kN} / \mathrm{m}$. However for Load Case B, the factored load is $-35.7 \mathrm{kN} / \mathrm{m}$, due to using a load factor of 1.35 instead of the required 1.5. A similar issue arises with the dead loads. This results in a small error in the total factored vertical load used subsequently in the sliding and eccentricity calculations.
The values of the load factors may be viewed by clicking on the icon "Load factors" in TensarSoil:

Solution 6
There is no work-round for the issue described above. However examining a number of design cases has confirmed that the effect on the calculated eccentricity and CDR for sliding is small to negligible. The effect is reduced as the wall back becomes steeper, and in the case of the vertical component of earth pressure being downwards, the error becomes conservative. It is recommended that no action is required with regards to this issue.

Issue 7 Using the BS 8006 tie-back wedge method, for the case below it was reported that the design failed due to rupture for Load Case B, which did not make sense. The value for T_{sj} appeared to be much too high:

Solution 7
The issue in the case above is that the first surcharge has been placed on top of the facing. Although this situation could occur, TensarSoil has not been set up to take this loading arrangement into account. If the surcharge is removed from the top of the facing, as shown below, then the design result is as expected.

In this case, there is no issue with TensarSoil. It is important that surcharge loads are not placed on the top of the facing.

There is a slight issue that the value for the load factor applied to the horizontal component of the load generated by earth pressure from dead loads on the surface of the backfill is shown as 1.35 in the view below, whereas it should be 1.5 according to the input form above.

Load factors, External stability					
Load applied to reinforced soil block			ULS		SLS
			Acting	Resisting	Acting \& resisting
Self weight of reinforced soil block	G_{1}	V_{1}	1.35	0.8	1.0
Dead loads above reinforced soil block	G_{3}	V_{9}	1.35	0.8	1.0
Live loads above reinforced soil block	Q_{1}	$\mathrm{V}_{\mathrm{q} 1}$	2.0	0.0	1.35
Earth pressure on back of reinforced soil block Horizontal components:					
from self weight of backfill:	E_{h} (from soil)	V_{92}	1.5	-	1.0
from dead load on backfill:	E_{h} (fromG ${ }_{2}$)	$\mathrm{V}_{\mathrm{g} 2}$	1.35	-	1.0
from live load on backfill:	$E_{h}\left(\right.$ fromQ ${ }_{2}$)	$\mathrm{V}_{\mathrm{q} 2}$	2.0	-	1.35
Vertical components: from self weight of backfill:	E_{v} (from soil)	$\mathrm{V}_{\mathrm{g} 2}$	1.5	0.8	1.0
from dead load on backfill:	E_{v} (fromG ${ }_{2}$)	$\mathrm{V}_{\mathrm{g} 2}$	1.5	0.8	1.0
from live load on backfill:	E_{v} (fromQ Q_{2})	$\mathrm{V}_{\mathrm{q} 2}$	2.0	0.0	1.35
Water pressure	W	V_{gw}	1.0	1.0	1.0
Load factors for earth pressure on the back of the reinforced block have been determined on the following basis: Load factors have been defined by the user.					

Based on an investigation into the results of calculations, it has been confirmed that the value of 1.35 shown in the table above is a typographical error, and that the calculations are carried out using the adjusted load factor of 1.5 .

Solution 8
There is no work-round for the issue described above. However the text on the PDF output may be edited to show a value of 1.5 rather than 1.35 .
FAQ 25
Issue date: $\mathbf{1 2}^{\text {th }}$ March 2021
Updated: 6 ${ }^{\text {th }}$ May 2024

